LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.C.A. DEGREE EXAMINATION - COMPUTER APPLICATIONS

FOURTH SEMESTER - APRIL 2023

UMT 4405 - MATHEMATICS FOR COMPUTER APPLICATIONS

Date: 04-05-2023 \square Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL questions

1. Express $\sin \theta$ in terms of ascending powers of θ.
2. Define reciprocal equation with an example.
3. State remainder theorem.
4. Express $\cosh ^{-1} x$ in terms of logarithmic functions.
5. What do you mean by interpolation?
6. Define a skew hermitian matrix with an example.
7. How do you calculate the eigen values of a matrix?
8. Give two examples for a homogeneous function.
9. Find the partial coefficients of $u=\sin (a x+b y)$.
10. What is the order of convergence in Newton-Raphson method?
PART - B

Answer any FIVE questions

11. Expand $\sin ^{3} \theta \cos ^{5} \theta$ in a series of sines of multiples of θ.
12. Separate $\tanh (1+i)$ into real and imaginary parts.
13. Find the condition that the roots of the equation $a x^{3}+3 b x^{2}+3 c x+d=0$ may be in geometric progression.
14. Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3\end{array}\right]$ and hence find its inverse.
15. Prove that $\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial x}$ when $u=\log \frac{x^{2}+y^{2}}{x y}$.
16. Evaluate the partial differential coefficients $\frac{\partial^{3} u}{\partial x^{3}}, \frac{\partial^{3} u}{\partial y^{3}}, \frac{\partial^{3} u}{\partial z^{3}}$ for the function $u=\sin (a x+b y+c z)$.
17. Evaluate $\int_{0}^{10} \frac{d x}{1+x^{2}}$ using Simpson's one-third rule.
18. Find an iterative formula to find \sqrt{N} and hence find $\sqrt{12}$ using Newton-Raphson method.

PART - C

19. Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position correct to three decimal places.
20. Solve the equation $6 x^{5}-x^{4}-43 x^{3}+43 x^{2}+x-6=0$.
21. Diagonalize the matrix $A=\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.
22. (a) If $z=f(x, y)$ where $x=r \cos \theta$ and $\mathrm{y}=r \sin \theta$, then prove that $\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}=\left(\frac{\partial z}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial z}{\partial \theta}\right)^{2}$.
(b) Expand $\cos 8 \theta$ in terms of $\sin \theta$.
\&\&\&\&\&\&\&\&\&\&
